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1. Stochastic Hamilton’s systems

We begin with the classic

1.1. Newton’s equation for a system of celeste objects

Consider N suns of masses m1, · · · ,mN (comparable) in the space R3.
The Newton equation for their movement is

mix
′′
i (t) =

∑
j 6=i

mimje(xj − xi)
|xi(t)− xj(t)|2

, i = 1, · · · , N,

where e(x) = x
|x| ,

x(t) = (x1(t), · · · , xN(t)), v(t) = x′(t) = (x′1(t), · · · , x
′
N(t))

are the position and velocity of the system (the couple (x(t), v(t)) is called
configuration).

For N = 2, according to the initial condition on (x(0), v(0)), the system of
two suns has three behaviors:
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1. the two suns colllapse;

2. moving one around the other;

3. they go away.

For N = 3 problem, Poincaré proved that the system is chaotic (sensitive
w.r.t. the initial position-velocity condition (x(0), v(0)): topologicaly recur-
rent) by introducing the notions of topology.

For simplicity let mi = 1. Then Newton’s equation can be written in the form
of Hamilton system dx(t) = v(t)dt

dv(t) = −∇V (x(t))dt

where
V (x1, · · · , xN) = −

∑
i 6=j

1

|xi − xj|

−1/|x| being the Newtonian potential.
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1.2. Stochastic damped Hamilton systems for microscopic objects

Consider a stochastic damped Hamilton system ofN particles (equal masses)
moving in Rd: whose configuration (x(t) = (x1(t), · · · , xN(t)), v(t) =

(x′1(t), · · · , x′N(t))) satisfiesdx(t) = v(t)dt

dv(t) = σ(x(t), v(t))dBt − c(x(t), v(t))v(t)dt−∇V (x(t))dt
(1) HE1

where

• σσT (x, v) > 0, C1-smooth (depending on the media);

• c(x, v) damping coefficient but may be negative;
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• the potential V is of form

V (x1, · · · , xN) =
n∑
i=1

U(xi) +
∑

1≤i<j≤N

VI(xi − xj) (2)

U : Rd → R is the confinement potential, C1-smooth, but the inter-
action potential VI : Rd\ → {0} → R has a singularity at the origin
0.

For example,

1. VI is the coulomb potential

VI(x) =
β

|x|
, if d = 3

where β > 0 is a physical constant. It is the negative Newtonian po-
tential.
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2. VI is the generalized Lennard-Jones potential

VI(x) =
b

|x|α
+ ΦI(x), x ∈ Rd\{0}

where b > 0, α > 0. Lennard-Jones potential corresponds to α = 12

and
VI(x) =

a

|x|12
−

b

|x|6
, (a, b > 0).

3. b > 0 and

VI(x) =

−b log |x|, (log-potential) if d = 2

b
|x|d−2 , if d ≥ 3

.

(called often as Newtonian potential in mathematics, it is a particular
case of Riesz potential if d ≥ 3).
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1.3. Few known results

Problem 1. Whether the stochastic Hamilton equation has a unique solution ?

Key: find a method and sufficient condition for no-collapse.

Problem 2. If Yes for problem 1, what is the behavior of the Hamilton system for
large time ? Is there exponential convergence to its unique stationary measure ?

At first we see what means no collapse:

τc := sup
ε>0

inf{t > 0 : min
i 6=j
|xi(t)− xj(t)| < ε} = +∞,

with probability 1.
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1. If d = 1, let

O = {x = (x1, · · · , xN) ∈ RN ; x1 < x2 < · · · < xN}

no collapse means that if x(0) ∈ O, then x(t) ∈ O for all time t > 0.

2. If d ≥ 2, let

O = {x = (x1, · · · , xN) ∈ (Rd)N ; |xi − xj| 6= 0}.

no collapse means that if x(0) ∈ O, then x(t) ∈ O for all time t > 0.

If no collapse, the stochastic Hamilton system lies in the state space

S = O × (Rd)N .
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Mathematical difficulties:

1. the generator of the stochastic Hamilton system

Lf(x, v) = v∂xf +
1

2

∑
i,j

(σσT )i,j∂vf − (c(x, v)v +∇V )∂vf,

((x, v) ∈ O × (Rd)N ) is hypoelliptic.

The distribution µt of Xt = (x(t), v(t)) satisfies the kinetic Fokker-
Planck equation in PDE’s theory. Equally difficult in PDEs.

2. Hormander’s hypoellipcility theory fails in the presence of singularity

3. Villani’s hypocoercivity theory fails too in the presence of singularity.
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Answer:

Y. Lu and J.C. Mattingly. Geometric ergodicity of Langevin dynamics with
Coulomb interactions. Nonlinearity, 33(2):675, 2019.

Method: via Lyapunov function. Work if coulomb potential and

σ(x, v) = σId(constant), c(x, v) = c > 0(constant).

But in the elliptic case, many results are known today, see

Feng-Yu Wang, Xi-Chen Zhang

Jabin-Wang (McKean-Vlasov’s equation)

etc.
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2. Quasi Stationary Distribution (QSD):
background and motivations

Let

• the state space S is Polish (metric, complete, separable) with Borel σ-field
B

•D ⊂ S a non-empty open domain

• (Xt)t≥0 be a strong Markov process with càdlàg trajectories, defined on
(Ω,Ft, (Px)x∈S).

• (Pt(x, dy))t≥0 the transition probability semigroup of (Xt),

Ptf(x) = Exf(Xt).

• L the generator of L : f ∈ De(L) if

Mt(f) := f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a local martingale under Px for every starting point x in S.
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Then u(t, x) := Ptf(x) satisfies the Kolmogorov backward equation

∂tu(t, x) = Lu(t, x), u(0, x) = f(x)

and for any initial distribution ν, the distribution νt = νPt of Xt at time t
satisfies the Kolmogorov forward equation

∂tνt = L∗νt, ν0 = ν.

Both are parabolic PDEs, when

Lf =
1

2

∑
i,j

aij(x)∂2
ijf +

∑
i

bi(x)∂if.

Definition 1 A probability measure µ is said to be a stationary distribution of
Xt, if

µ(A) = (µPt)(A) :=

∫
S

Pt(x,A)dµ(x), ∀A ∈ B.

In statistical mechanics or biology, µ is called often equilibrium state.
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A fundamental question in the ergodicity is

(1) Does the stationary distribution µ exist ? unique ?

If Yes,

(2) How fast νt converges to µ ?

Methods :

Lyapunov functions : books by Khasminski, Meyn-Tweedie

Functional inequalities : books by D. Bakry, M.F. Chen, M. Ledoux, Saloff-
Coste, F.Y. Wang,

Coupling : M.F. Chen’s book.
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Now consider the process (Xt)t<σD killed outside D, where

σD := inf{t ≥ 0;Xt /∈ D}

is the first exit time. Its transition semigroup is given by

PD
t f(x) = Ex1t<σDf(Xt).

For a physical system described by Langevin equations in low temperature,
though the system will converge to its equilibrium state µ at “infinite” time, in
reality it stays in an attraction domain D for long time!

The mathematical notion to describe this meta-stable state is
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Definition 2 A quasi-stationary distribution (QSD in short) of the Markov pro-
cess (Xt) in the domain D is a probability measure on D such that for all
t > 0, A ⊂ D,A ∈ B,

µD(A) = PµD(Xt ∈ A|t < σD) =
PµD(Xt ∈ A, t < σD)

PµD(t < σD)
(3) QSD

A fundamental question in the study of QSD is

(1) Does the QSD µD exist ? unique ?

If Yes,

(2) How fast νDt := Pν(Xt ∈ ·|t < σD) converges to µD ?

Remark 1 From the definition (3), µD is a QSD if and only if

µDP
D
t = λ(t)µD, λ(t) = PµD(t < σD)

in other words, µD must be a common positive left-eigenvector of PD
t .
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Motivations :

For the QSD of population processes or more generally of models derived
from biological systems, see

P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S. Méléard, and J. San Martin.
Quasi-stationary distributions and diffusion models in population dynamics.
Annals of Probability, 37(5):1926-1969, 2009.

P. Collet, S. Martinez, S. Méléard, and J. San Martin. Quasi-stationary distri-
butions for structured birth and death processes with mutations. Probability
Theory and Related Fields, 151(1-2):191- 231, 2011.

S. Méléard and D. Villemonais. Quasi-stationary distributions and population
processes. Probability Surveys, 9:340-410, 2012.

P. Collet, S. Martinez, and J. San Martin. Quasi-stationary distributions:
Markov chains, diffusions and dynamical systems. Springer Science & Busi-
ness Media, 2012.
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J. Zhang, S. Li, and R. Song. Quasi-stationarity and quasi-ergodicity of
general Markov processes. Science China Mathematics, 57(10):2013-2024,
2014.

From Statistical Physics : metastability.

G. Di Gesù, T. Lelièvre, D. Le Peutrec, and B. Nectoux. Jump markov models
and transition state theory: the quasi-stationary distribution approach. Fara-
day Discussions, 195:469-495, 2017.

G. Di Gesù, T. Lelièvre, D. Le Peutrec, and B. Nectoux. Sharp asymptotics of
the first exit point density. Annals of PDE, 5(2), 2019.

G. Di Gesù, T. Lelièvre, D. Le Peutrec, and B. Nectoux. The exit from a
metastable state: concentration of the exit point distribution on the low en-
ergy saddle points, part 1. Journal de Mathématiques Pures et Appliquées,
138:242-306, 2020.
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P. Diaconis and L. Miclo. On times to quasi-stationarity for birth and death
processes. Journal of Theoretical Probability, 22(3):558-586, 2009.

P. Diaconis and L. Miclo. On quantitative convergence to quasi-stationarity.
In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume
24, pages 973-1016, 2015.

G. Gong, M. Qian, and Z. Zhao. Killed diffusions and their conditioning. Prob-
ability Theory and Related Fields, 80(1):151-167, 1988.
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Accelerated algorithms: Fleming-Viot processes

Proposed by

M.R. Sorensen and A.F. Voter. Temperature-accelerated dynamics for simu-
lation of infrequent events. Journal of Chemical Physics, 112(21):9599-9606,
2000.

A.F. Voter. A method for accelerating the molecular dynamics simulation of
infrequent events. Journal of Chemical Physics, 106(11):4665-4677, 1997.

A.F. Voter. Parallel replica method for dynamics of infrequent events. Physical
Review B, 57(22):R13 985, 1998.
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Applications:

X. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, and B. P. Uberuaga. Efficient
annealing of radiation damage near grain boundaries via interstitial emission.
Science, 327(5973):1631-1634, 2010.

F. Montalenti, M. R. Sorensen, and A. F. Voter. Closing the gap between
experiment and theory: Crystal growth by temperature accelerated dynamics.
Physical Review Letters, 87:126101, Aug 2001.

F. Montalenti and A.F. Voter. Exploiting past visits or minimum-barrier knowl-
edge to gain further boost in the temperature-accelerated dynamics method.
Journal of chemical physics, 116(12):4819-4828, 2002.
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B.P. Uberuaga, R. Smith, A.R. Cleave, F. Montalenti, G. Henkelman, R.W.
Grimes, A.F. Voter, and K.E. Sickafus. Structure and mobility of defects
formed from collision cascades in MgO. Physical review letters, 92(11):115505,
2004.

B.P. Uberuaga, S.J. Stuart, W. Windl, M.P. Masquelier, and A.F. Voter. Fullerene
and graphene formation from carbon nanotube fragments. Computational
and Theoretical Chemistry, 987:115- 121, 2012.
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Mathematical justifications.

D. Aristoff and T. Lelièvre. Mathematical analysis of temperature accelerated
dynamics. Multiscale Modeling and Simulation, 12(1):290-317, 2014.

M. Benaim, B. Cloez, and F. Panloup. Stochastic approximation of quasi-
stationary distributions on compact spaces and applications. Annals of Ap-
plied Probability, 28(4):2370-2416, 2018.

B. Cloez and M.N. Thai. Quantitative results for the Fleming-Viot iot parti-
cle system and quasi- stationary distributions in discrete space. Stochastic
Processes and their Applications, 126(3):680- 702, 2016.

C. Le Bris, T. Lelièvre, M. Luskin, and D. Perez. A mathematical formaliza-
tion of the parallel replica dynamics. Monte Carlo Methods and Applications,
18(2):119-146, 2012.

T. Lelièvre and G. Stoltz. Partial differential equations and stochastic meth-
ods in molecular dynamics. Acta Numerica, 25:681-880, 2016.
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3. General framework and tools
We first present a general framework on (Xt).

(C1) (strong Feller property) There is some t0 > 0 such that for each t ≥ t0,
Pt is strong Feller, i.e. Ptf is continuous for all f ∈ bB.

(C2) (trajectory Feller property) For every T > 0, x→ Px(x[0,T ] ∈ ·) is con-
tinuous from S to the spaceM1(D([0, T ], E)) of probability measures
on D([0, T ], S) equipped with the weak convergence topology.

(C3) There are some continuous function function W : S → [1,+∞[, be-
longing to the generalized domain D(L), two sequences of positive con-
stants (rn) and (bn) where rn → +∞, and an increasing sequence of
compact subsets (Kn) of S, such that

−LW (x) ≥ rnW (x)− bn1Kn(x), q.e.
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Definition 3 Two functions g1, g2 are said to be equal q.e., if g1 = g2

almost everywhere in the (resolvent) measure

R1(x, ·) =

∫ +∞

0

e−tPt(x, ·)dt

for every x ∈ S.

Suppose that the killed process (Xt)t<σD satisfies

(C4) PD
t , t ≥ 0 are Feller on Cb(D);

(C5) there exists t0 > 0 such that for all t ≥ t0, for all x ∈ D and non-empty
open subsets O of D,

PD
t (x,O) > 0

and there is some x0 ∈ D such that Px0(σD < +∞) > 0.
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Our talk is based on our following general result obtained in (Guillin, Nectoux
and Wu 2020, submitted to JEMS).

thm-main Theorem 1 Assume (C1), (C2), (C3), (C4), (C5). Then

(a) there is only one QSD µD satisfying

µD(W 1/p) :=

∫
D

W 1/p(x)µD(dx) < +∞

for some p ∈]1,+∞[.

(b) In particular if W is bounded, the QSD inside D is unique.

(c) the spectral radius of PD
t on bW1/pB(D) equals to e−λDt for all t ≥ 0

where 0 < λD < +∞ (which is often called least Dirichlet eigenvalue
of the killed Markov process), and there is a unique continuous function
ϕ bounded by cW1/p and positive everywhere onD such that µD(ϕ) =

1 and

µDP
D
t = e−λDtµD, P

D
t ϕ = e−λDtϕ on D, ∀t ≥ 0. (4) thm-main-aa
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Here bW1/pB(D) is the Banach space of allB(D)-measurable functions
on D so that its norm

‖f‖b
W1/pB(D) := sup

x∈D

|f(x)|
W1/p(x)

< +∞.

(d) for any p ∈]1,+∞[ fixed, there are some constants δ > 0 and C ≥ 1

such that for any initial distribution ν onD with ν(W 1/p) < +∞, for all
A ∈ BD, t > 0,

|Pν(Xt ∈ A|t < σD)− µD(A)| ≤ Ce−δt
ν(W 1/p)

ν(ϕ)
. (5) thm-maina

(e) λD > 0, Px(σD < +∞) = 1 for every x ∈ D, XσD and σD are
PµD -independent and

PµD(t < σD) = e−λDt.
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4. Main results

The stochastic Hamilton system lies in the state space S = O × (Rd)N .

Consider a domain
D = O × (Rd)N

where O is a non-empty connected open domain with C2-boundary outside
the singularity set ∂O, i.e. ∂O\∂O is C2.

Problem 3. WhetherXt = (x(t), v(t)) has a unique QSD µD ?

Problem 4.Whether Pν(Xt ∈ ·|σD > t)→ µD with an exponential rate ?
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4.1. Generalized Lennard-Jones potential

Hypotheses in the generalized Lennard-Jones potential

The interaction VI is of form

VI(x) =
b

|x|α
+ ΦI(x), x ∈ Rd\{0} (6) I-LJ

where b > 0, α > 0.

1. The confinement potential U : Rd → R satisfies:
for some A > 0, γ > 1

U(x) = A|x|γ + Ψ(x), x ∈ Rd

where

lim
|x|→+∞

|Ψ(x)|
|x|γ

= lim
|x|→+∞

|∇Ψ(x)|
|x|γ−1

= lim
|x|→+∞

|HessΨ(x)|
|x|γ−2

= 0
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2. ΦI(x) in (6) defined on (0,+∞) if d = 1 and Rd\{0} if d ≥ 2, satisfies

lim
x→0
|x|αΦI(x) = lim

x→0
|x|α+1|∇ΦI(x)|

= lim
x→0
|x|α+2|∇ΦI(x)| = 0

and ΦI,∇ΦI,∇2ΦI are bounded and continuous for |x| > R (for
some R > 0).

The set of the above hypotheses is named as (H-LJ).
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Hypotheses on the damping coefficient and the diffusion matrix

(Ac) c(x, v) : (Rd)N × (Rd)N → MNd(R) is C1 and bounded, and ∃c0 >
0, R > 0 such that if |(x, v)| > R

c(x, v)c(x, v)T > c0I.

(Aσ) σ(x, v) is C∞ and there are 0 < a < b such that

aI ≤ σσT (x, v) ≤ bI

in the sense of definite positive matrices.
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thm_LJ Theorem 2 Assume (H-JS), (Ac), (Aσ). Then

1. (Xt) does not explode, has no collapse (essentially due to Lu and Mat-
tingly 19).

2. Let
D = O × (Rd)N

whereO is a connected open domain inO such thatO\Ō is non-empty
and ∂O\O is C2.

3. There are some constant η ∈ (0, 1] and a Lypunov function

W (x, v) ≤ emH(x,v)η , H(x, v) =
1

2
|v|2 + V (x) is the Hamiltonian

such that all five conclusions in Theorem 1 for this Lyapunov function.
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Remark 2 This theorem covers the Riesz potential VI(x) = 1
|x|d−α for α ∈

(0, d), including the Coulomb potential.

4.2. Log-potential

For the log-potential (if d = 1, 2, VI(x) = −b log |x|), the same results in
Theorem 2 still hold true with a different Lyapunov function W .
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——————

Thanks !

——————


